
 

  

I.  INTRODUCTION 
 

Three-dimensional (3D) printing is one of the key 

technologies in Maker movement [1]. 3D printers are 

widely used in the world, and as such, 3D printing 

technology is now expanding into many fields such as 

cellular engineering [2, 3], tissue and scaffold 

engineering [4, 5], anatomy [6], microfluidics [7, 8], 

electronics [9, 10], music [11], architectonics [12], and 

technics [13]. In contrast, the use of 3D printing in the 

field of plasma engineering has not yet been thoroughly 

explored. This research endeavor contends that as rapid 

prototyping of a 3D printer is suitable for the fabrication 

of a non-thermal plasma reactor with several geometries, 

it cannot be easily fabricated using conventional methods. 

From a historical perspective, the first development of a 

non-thermal plasma reactor operated at atmospheric 

pressure can be traced back to the ozonizer invented by 

Siemens in the 1850s [14]. To date, various types of 

plasma reactors have been developed and evaluated [15-

23]. Essentially, the plasma reactor consists of electrodes 

(metals) and supporting parts (insulators). The insulating 

parts are usually made of glass, ceramics, or plastics. 

Therefore, there are limitations on the design and 

fabrication parameters of such a reactor. 

In this study, a new approach for the design and 

fabrication of non-thermal plasma reactors used at 

atmospheric pressure is presented by using 3D printing 

technology. The aim of this research is to verify the 

feasibility of such an approach and to evaluate a novel 

plasma reactor prototype prepared using a 3D printer. 

 

 

II.  THE 3D-PRINTED PLASMA REACTOR 

 

Fig. 1 shows a schematic diagram of the coaxial 

cylindrical plasma reactor used as the 3D prototype 

modeled in this study. The insulating parts of the plasma 

reactor were prepared using a 3D printer. In a practical 

fabrication process, the body of the reactor was first 

designed using computer-aided design (CAD) software 

(Rhinoceros Ver. 5, Robert McNeel & Associates), with 

the subject 3D CAD data being created as shown in 

Fig. 2. Subsequently, the 3D CAD data were converted to 

a Standard Tessellation Language (STL) file for printing. 

Finally, the main body (the insulating parts of the plasma 

reactor) was prepared with acrylonitrile butadiene styrene 

(ABS) plastic using the 3D printer (Value 3D MagiX 

MF-1000, Mutoh Engineering, Japan) on the basis of 

fused-deposition modeling. Fig. 3 depicts a typical 

fabrication process for the reactor. By printing with a 

resolution (i.e., the distance between layers) of 0.25 mm, 

it took approximately 3 hours to fully print. Only the 

metal electrodes, i.e., the threaded rod (used as a powered 

electrode) and the mesh (used as a grounded electrode), 

were added later. The reactor specifications and 
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Fig. 1.  3D printing model reactor. 

(DBD plasma reactor with running water film) 
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experimental conditions are summarized in Table I. 

Fig. 4 shows a typical prototype of the reactor. 

Pulsed dielectric barrier discharge (DBD) was generated 

between the threaded metal rod electrode and running 

water film of the inner wall of the ABS plastic reactor.  

The performance of the prototypes was 

experimentally evaluated by a comparison with a normal 

plasma reactor made by a silica glass tube.   

 

 

III.  PERFORMANCE EVALUATION 

 

 Fig. 5 shows the typical applied pulse high voltage 

and current waveforms of the DBD-type pulsed 

discharges. Fig. 5 (a) shows the waveforms for the 3D 

printed reactor, while Fig. 5 (b) shows the waveforms for 

the normal silica glass reactor. Although the same 

applied voltages of 30 kV were applied to both reactors, 

the peak current of the 3D printed reactor was reduced to 

almost half. This is because of the difference in the 

electrical properties between the ABS plastic and silica 

glass (Table II, [24]). In the case of the 3D printed 

reactor, an infill density and irregularities (including void 

formation) in the printed material also affect the 

discharge performance. 

 Fig. 6 shows the typical discharge image captured by 

a digital camera (Nikon, D5200). The applied voltage 

was 24 kV, and its repetition rate was 100 pps. A noted 

bright, uniform illumination was because of the fact that 

many filamentary discharges were captured during the 

exposure time. The reactor proved itself strong and 

lightweight in comparison with the normal glass reactor. 

The 3D printed reactor could be operated without a spark 

transition up to 30 kV, which is the ceiling of the pulsed 

power system used in this study. However, when the 

water flow rate was decreased, subsequent breakdown 

occurred because the running water film became thin. 

Moreover, because the heatproof temperature of ABS is 

 
 

Fig. 2.  3D CAD data of the reactor body and its cap for the support 
of an inner electrode (perspective view). 

 

 
 

Fig. 3.  3D printing process of a prototype cylindrical plasma 

reactor using FDM technology.  

A transparent ABS plastic was used as an insulating material. 
(Printer: Value 3D MagiX MF-1000, Mutoh Engineering, Japan) 

 

 
 

Fig. 4.  3D printed cylindrical plasma reactor. 

STL files of the reactor are available at  

http://elecls.cc.oita-u.ac.jp/plasma/download/3Dcad.html. 

TABLE I 

REACTOR SPECIFICATIONS AND EXPERIMENTAL CONDITIONS 

 

Reactor specifications 
Cylindrical parts: Outer dia. 17.5 mm, Inner dia. 14.5 mm, ABS 

Length for discharging region: 60 mm 

Electrodes: High-voltage electrode: threaded rod (M4), Stainless steel 
Grounded electrode: 30 mesh, Stainless steel 

Gap distance for the discharge: 5 mm 

 
Experimental conditions 

Power source: Magnetic compression type pulse power system 

(Suematsu, MPC3010S-50SP) 
Applied voltage: 18–30 kV, Pulse width: 100 ns 

Repetition rate: 100 pps 

 
Liquid fluid:  Running water film of the inner wall of the reactor 

                       Tap water, Dyed water: 600 mL/min 

 

    

TABLE II                                                                                                   

COMPARISON OF ELECTRICAL PROPERTIES OF INSULATING 

MATERIALS USED FOR THE REACTORS IN THIS STUDY 

 

 

                                                               ABS plastic        Silica glass 

Volume resistivity [Ω･m]                             1014                               1014 

Dielectric strength [MV/m]                        12–16                   43 

Relative permittivity (1 kHz)                      2.7–4.8                3.6 
Dielectric loss tangent × 10−4 (1 kHz)        20–120                

 × 10−4 (1 MHz)           1.2 

 

50 mm 
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100°C, a deterioration of the reactor (such as a surface 

deformation) occurs if the reactor is operated without the 

running water film, which has a function of cooling on 

the reactor wall. No water leakage was observed, 

however, via several operational trials. Furthermore, the 

3D printed reactor’s ability to be modified rapidly and 

easily using 3D CAD software is greatly advantageous.  

Finally, the decolorization test for the treatment of 

simulated waste water was performed. Fig. 7 shows the 

test result of a comparison of the decolorization process 

between the normal silica glass reactor and the 3D 

printed ABS reactor.  Although the decolorization speed 

of the glass reactor is a slightly faster than that of the 3D 

reactor, a degradation effect of the organic dye by the 

DBD plasma was confirmed using the 3D printed reactor.   

At present, the STL file of the reactor developed in this 

study is publicly available through a website via the 

following link: http://elecls.cc.oita-u.ac.jp/plasma/ 
download/3Dcad.html. By introducing several 

modifications such as surface deformation of the reactor 

wall and incorporation of a catalyst, a novel plasma 

reactor with several functions can be successfully 

rendered. Consequently, 3D printing technology can be 

used for the conceptual design and optimization of a non-

thermal plasma reactor. 

 

 

IV.  CONCLUSION 

 

 We found that 3D printing technology has opened a 

new door for the design and fabrication of a prototype 

non-thermal plasma reactor. In addition, such a 

technology can offer a variable, fast, and cost-efficient 

production process for the development of prototype 

plasma reactors. 

 

 

 
(a) 

 

 
(b) 

 
Fig. 5.  Typical applied voltage and discharge current waveforms 

(a) 3D printed reactor, (b) normal silica glass reactor. 
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Fig. 6.  Discharge image captured by the digital camera.  
(Applied pulse voltage: 24 kV, Tap water flow rate: 600 mL/min, 

Exposure time: 10 s) 

 

 
 

Fig. 7.  Comparison of the decolorization process between 3D 
printed ABS plastic reactor and the normal silica glass reactor. 

(Dye type: Indigo carmine, Concentration of dye: 10 mg/L, Liquid 

volume: 200 mL, Applied voltage: 24 kV, Repetition rate: 100 pps) 
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